

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

IBA Dosimetry America Inc. dba Radcal 426 West Duarte Road Monrovia, CA 91016

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 01 July 2025 Certificate Number: AC-1553

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

IBA Dosimetry America Inc. dba Radcal

426 West Duarte Road Monrovia, CA 91016 Ivan Chanca <u>www.radcal.com</u> <u>ivanchanca@radcal.com</u> Phone: 626-357-7921

CALIBRATION

Valid to: July 01, 2025

Certificate Number: AC-1553

Ionizing Radiation

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dose, Diagnostic (40 to 150) kV (1.4 to 14) mm Al HVL	(1 to 100) mGy	3.3 % of reading	Internal Method (Anode/Filter W/Al, W/Cu)
Dose, Mammographic (20 to 50) kV (0.15 to 1.4) mm Al HVL	(1 to 100) mGy	3.3 % of reading	Internal Method (Anode/Filter W/Al, W/Ag, W/Rh, Mo/Mo, Mo/Rh, Rh/Rh)
Non-Invasive kVp, Diagnostic	(40 to 150) kVp	0.055 kV	Dynalyzer Internal Method (Anode/Filter W/Al, W/Cu)
Non-Invasive kVp, Mammographic	(20 to 40) kVp	0.21 kV	Dynalyzer Internal Method (Anode/Filter W/Al, W/Ag, W/Rh, Mo/Mo, Mo/Rh, Rh/Rh)
Invasive kVp	(10 to 75) kV	0.16 kV	Dynalyzer Internal Method
Anode Current Fluoro mode Rad mode	(10 to 20) mA (50 to 250) mA	0.14 mA 0.43 mA	HP 34401A Multimeter Internal Method
Filament Current	2.5 A +/- 5 % (0.1 to 1) A	0.013 A 2 % of reading	Shunt Internal Method

Ionizing Radiation

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dynalyzer Display	± (40 to 150) kV (25 to 1 000) mA	0.1 <mark>%</mark> of reading 0.08 <mark>3 %</mark> of reading	HP 34401A Multimeter Internal Method
mAs	(0.001 to 9 999) mAs	0.1 <mark>5 % o</mark> f reading	90M9 mAs sensor, HP 5315A Counter Internal Method
Gamma	(5 to 20) μGy/min (0.02 to 3) mGy/min 30 mGy/min	3.3 % of reading	Reference Chambers, ¹³⁷ Cs, ⁶⁰ Co, Internal Method

Photometry and Radiometry

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Luminance ²	100 cd/m ²	3 % of reading	Luminance detector
Illuminance ²	110 lux	3 % of reading	Illuminance detector

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.

2. The nominal values listed are approximate.

3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1553.

Jason Stine, Vice President

www.anab.org